
KI-gestützte
Entwicklung

VON DER IDEE ZUR PRODUKTION

Der komplette All-in-One-Leitfaden, um deine eigene Website,

App oder dein Startup von Grund auf zu erstellen. Lerne KI-

Agenten und Tools zu beherrschen, Zahlungen zu integrieren,

deinen Server bereitzustellen und Marketing-Tricks für

organisches Wachstum.

apifreel lm.com

Version 1.0 — Februar 2026

Inhaltsverzeichnis

1. Einführung

Die Welt hat sich verändert

Warum es diesen Kurs gibt

2. Der KI-First-Entwicklungsstack

Die KI-Agenten-Landschaft

Deinen Agenten wählen & konfigurieren

Unverzichtbare Tools: Git & GitHub CLI

3. Dein erstes Projekt: Von Null auf Live

Nie bei Null anfangen

Den richtigen Stack wählen

4. Vom Code zur Produktion

Zahlungen mit Stripe

Hosting: AWS, Hetzner & mehr

Cloudflare: Performance & Schutz

CI/CD mit GitHub Actions

5. Marketing- & SEO-Taktiken

Strategien für organisches Wachstum

SEO, Content & Distribution

Bonus: Fertige Quellcodes

1. Einführung

Du liest das gerade, weil irgendwo eine Kombination aus Marketing-Strategien, SEO-

Techniken und cleverer Positionierung diesen Kurs auf deinen Bildschirm gebracht hat. Das

allein sollte dir etwas sagen: Die Taktiken in diesem Leitfaden funktionieren tatsächlich. Und ja,

du wirst jede einzelne davon lernen.

Die Welt hat sich verändert

Softwareentwicklung ist nicht mehr das, was sie einmal war. Vor ein paar Jahren erforderte der

Aufbau einer Webanwendung monatelange Arbeit, ein Team von Entwicklern und ein

beträchtliches Budget. Heute kann eine einzelne Person mit den richtigen Tools und dem richtigen

Wissen eine produktionsreife Anwendung in Tagen statt Monaten erstellen und veröffentlichen.

Dieser Kurs wurde von Fachleuten geschrieben, die in der Branche arbeiten und täglich KI-

Agenten-Tools verwenden, um echte Produkte zu bauen. Wir unterrichten keine Theorie aus dem

Lehrbuch. Wir lehren, was in der realen Welt tatsächlich funktioniert, genau jetzt.

Warum es diesen Kurs gibt

KI und LLMs sind mittlerweile bessere und schnellere Umsetzer als Menschen. Sie können Code

schreiben, debuggen, refaktorisieren und deployen mit einer Geschwindigkeit, die kein Mensch

erreichen kann. Aber etwas fehlt ihnen grundlegend: Ideen.

KI-Modelle sind außergewöhnliche Umsetzer, aber sie sind keine Innovatoren. Sie sehen

keine Marktlücke und denken „Da könnte ich etwas bauen, um das zu lösen." Das ist dein

Job. Deine Rolle ist es, der Architekt der Ideen zu sein. Die KI ist dein Baumeister.

Wenn du einem LLM schlechte Anweisungen gibst, wird es trotzdem etwas produzieren. Es wird

nicht anhalten und erklären, was tatsächlich besser wäre. Die Qualität dessen, was du baust, ist

direkt proportional zur Qualität deines Wissens. Dieser Kurs schließt diese Lücke.

Das ist nicht nur ein Entwicklungskurs. Das ist eine komplette Blaupause, um von einer Idee zu

einem live geschalteten, umsatzgenerierenden Produkt zu gelangen. Einschließlich extrem

effektiver Marketing- und SEO-Taktiken — dieselben Techniken, die dich auf genau diese Seite

gebracht haben.

2. Der KI-First-Entwicklungsstack

Die Tools, die du wählst, bestimmen, wie schnell du vorankommst. In diesem Kapitel analysieren

wir die heute verfügbaren KI-Coding-Agenten, helfen dir, den richtigen auszuwählen, und

lehren dich die Prompting-Strategien, die Amateure von Profis unterscheiden.

Hinweis: Dieser Leitfaden wurde unter Windows geschrieben, aber alle Tools und Schritte

funktionieren identisch auf macOS und Linux. Google Antigravity, Claude Code und jede

andere in diesem Kurs besprochene Anwendung sind vollständig plattformübergreifend.

Wenn du einen Mac oder eine Linux-Maschine verwendest, folge einfach denselben

Schritten — die Oberflächen und Workflows sind identisch.

Die KI-Agenten-Landschaft

Der Bereich der KI-Coding-Tools hat sich explosionsartig entwickelt. Aber nicht alle Tools sind

gleich. Einige sind glorifizierte Autovervollständigungs-Engines. Andere sind vollautonome

Agenten, die deine gesamte Codebasis lesen, eine Strategie planen, Änderungen über mehrere

Dateien hinweg ausführen, Tests durchführen und Fehler selbstständig beheben können. Diesen

Unterschied zu verstehen ist entscheidend.

Es gibt zwei grundlegende Kategorien von KI-Coding-Tools:

Inline-Assistenten — Diese sitzen in deinem Editor und schlagen Code vor, während du tippst.

Denk an den ursprünglichen GitHub Copilot. Sie sind reaktiv: Sie warten, bis du schreibst, und

versuchen dann zu erraten, was als Nächstes kommt. Nützlich, aber begrenzt.

Agentische Tools — Diese sind eine völlig andere Liga. Du gibst ihnen eine Aufgabe in

natürlicher Sprache, und sie planen, schreiben, bearbeiten, debuggen und iterieren autonom.

Sie schlagen nicht nur eine Codezeile vor. Sie bauen Features. Hier liegt die wahre Power.

Hier sind die Tools, die gerade wichtig sind:

Claude Code (von Anthropic)

Claude Code ist unserer Erfahrung nach der leistungsfähigste KI-Coding-Agent, der heute

verfügbar ist. Es ist ein terminalbasierter Agent, der direkt in deinem Projektverzeichnis arbeitet.

Du gibst ihm Anweisungen in natürlicher Sprache, und er liest deine Dateien, schreibt Code, führt

Befehle aus, erstellt Commits und behebt Fehler autonom. Er hat vollen Zugriff auf dein

Dateisystem und deine Shell, was ihn unglaublich effektiv für echte Entwicklungsarbeit macht. Du

kannst ihn über npm installieren (npm install -g @anthropic-ai/claude-code) oder als VS Code-

Erweiterung verwenden, die wir gleich besprechen werden.

Google Antigravity

Antigravity ist eine Entwicklungsumgebung von Google, die KI-gestützten Chat und Agenten-

Fähigkeiten direkt in deinen Workflow bringt. Stell es dir als einen intelligenten Arbeitsbereich vor,

in dem du über Chat-Interfaces mit KI-Agenten interagieren kannst, und aus jeder Agenten-

Konversation kannst du einen integrierten VS Code-Editor öffnen. Das ist der Schlüssel:

Antigravity gibt dir die konversationelle KI-Schicht, während VS Code die Code-Editing-Power

liefert. Die Kombination ist nahtlos — du besprichst mit dem Agenten, was du bauen willst, und

springst dann direkt in den Code, ohne Fenster wechseln zu müssen.

Cursor

Cursor ist ein Fork von VS Code mit tief integrierter KI. Es hat sowohl Inline-Vorschläge als auch

einen agentischen „Composer"-Modus, in dem du Änderungen über mehrere Dateien hinweg

beschreiben kannst. Die Benutzeroberfläche ist vertraut, wenn du bereits VS Code verwendest,

und es unterstützt mehrere Modelle (Claude, GPT usw.). Es ist ein solides Tool, besonders wenn du

einen vollständig visuellen Workflow bevorzugst. Allerdings sind seine agentischen Fähigkeiten,

obwohl gut, nicht so autonom wie Claude Code. Du musst oft einzelne Änderungen Schritt für

Schritt überprüfen und genehmigen.

Unser empfohlenes Setup: Google Antigravity + Claude Code als VS Code-Erweiterung.

Nutze Antigravitys Agenten-Chats zum Planen und Besprechen deiner Arbeit, öffne dann

den integrierten VS Code und lass Claude Code die schwere Umsetzung übernehmen. Das

gibt dir das Beste aus beiden Welten: intelligente Konversation für die Planung und

autonome Code-Ausführung für den Aufbau.

Deinen Agenten wählen & konfigurieren

Ein agentisches Tool zu installieren und auszuführen ist der einfache Teil. Das Maximum

herauszuholen erfordert ein Verständnis dafür, wie es funktioniert, das richtige Abonnement zu

wählen und es korrekt einzurichten.

Das Claude-Abonnement: starte mit Pro

Claude Code erfordert einen Anthropic-Account. Wir empfehlen, mit dem Claude Pro-

Abonnement zu starten, der Einstiegs-Bezahlstufe. Es ist erschwinglich und gibt dir Zugang zu

Claude Code mit allen Features. Es ist der perfekte Ausgangspunkt zum Experimentieren, den

Workflow zu lernen und dein erstes einfaches Projekt zu bauen.

Beachte jedoch, dass der Pro-Plan ein begrenztes Nutzungskontingent hat. Wenn du Claude

Code intensiv nutzt, erreichst du das Limit relativ schnell. Zum Lernen und für kleine Projekte reicht

es mehr als aus. Wenn du aber bereits weißt, dass du Claude Code als dein primäres

Entwicklungstool verwenden und täglich stundenlang damit arbeiten willst, ziehe ein Upgrade auf

einen höheren Plan (wie Max) von Anfang an in Betracht. Die höheren Pläne bieten deutlich mehr

Nutzungskontingent, was weniger Unterbrechungen und einen flüssigeren Workflow beim

Erstellen größerer Projekte bedeutet.

Das Modell: Claude Opus 4.6

Wir empfehlen derzeit Claude Opus 4.6 als dein primäres Entwicklungsmodell. Es ist aktuell das

beste Modell für den Aufbau von Websites und Anwendungen. Es versteht komplexe

Architekturen, schreibt sauberen und produktionsreifen Code, bewältigt Änderungen über

mehrere Dateien mit bemerkenswerter Genauigkeit und braucht selten Korrekturen beim ersten

Versuch. Wenn du mit Claude Code arbeitest, stelle Opus 4.6 als dein Standardmodell ein. Der

Unterschied in der Ausgabequalität im Vergleich zu kleineren Modellen ist sofort spürbar.

Antigravity einrichten

Ab diesem Punkt fährt dieser Leitfaden mit Google Antigravity als unserer primären

Entwicklungsumgebung fort. So machst du alles startklar.

Schritt 1: Erstelle deinen Projektordner. Bevor du Antigravity öffnest, erstelle einen Ordner auf

deinem Computer, in dem dein erstes Projekt leben wird. Zum Beispiel könntest du unter Windows

C:\Projects\my-first-app erstellen, oder auf Mac/Linux ~/Projects/my-first-app . Das ist der

Ordner, den Antigravity als Workspace öffnen wird. Er kann vorerst leer sein — wir füllen ihn später

im Kurs mit Code.

Schritt 2: Installiere und starte Antigravity. Lade Google Antigravity herunter, installiere es und

öffne es. Melde dich mit deinem Google-Konto an, wenn du dazu aufgefordert wirst.

Während des Installationsprozesses wird Antigravity dich bitten, einige Richtlinien zu

konfigurieren. Für einen schnellen, autonomen Entwicklungs-Workflow empfehlen wir, die

benutzerdefinierte Konfiguration auszuwählen und diese Optionen einzustellen:

Terminal-Ausführungsrichtlinie → Immer fortfahren

Überprüfungsrichtlinie → Immer fortfahren

JavaScript-Ausführung → Immer fortfahren

Mit diesen Einstellungen können die Agenten von Antigravity Befehle ausführen, Dateien schreiben

und Code autonom ausführen, ohne bei jedem Schritt nach Bestätigung zu fragen. Das ist es, was

die schnelle, flüssige Entwicklungserfahrung ermöglicht, die wir in diesem Kurs anstreben.

Sicherheitswarnung: Wenn du Agenten erlaubst, autonom fortzufahren, können sowohl

Antigravity als auch Claude Code Aktionen auf deinem System ohne manuelle

Genehmigung ausführen. Das bedeutet, du musst darauf achten, was du ihnen zugänglich

machst. Richte Agenten nicht auf Codebasen, die Malware enthalten könnten, und sei

vorsichtig mit Links oder Ressourcen aus nicht vertrauenswürdigen Quellen. Im KI-Zeitalter

gibt es neue Angriffsvektoren — böswillige Akteure können Inhalte erstellen, die speziell

darauf ausgelegt sind, LLMs dazu zu bringen, schädliche Befehle auszuführen. Behalte

immer im Auge, was deine Agenten tun. Wir empfehlen das „Immer fortfahren"-Setup für

Geschwindigkeit, aber bleib wachsam und überprüfe die Ausgabe regelmäßig.

Schritt 3: Öffne den Agent Manager. Sobald Antigravity läuft, klicke auf „Open Agent Manager" in

der oberen Leiste des Fensters.

Der „Open Agent Manager"-Button in Antigravitys oberer Leiste.

Der Agent Manager ist die zentrale Anlaufstelle von Antigravity. Hier verwaltest du deine Projekte,

startest KI-Konversationen und öffnest deine Entwicklungs-Workspaces.

Schritt 4: Erstelle deinen ersten Workspace. Im Agent Manager schau dir die linke Seitenleiste an.

Unter dem Abschnitt „Workspaces" klicke auf „+ Open Workspace". Ein Dropdown erscheint —

wähle „Open New Workspace".

Klicke auf „+ Open Workspace" in der linken Seitenleiste, dann wähle „Open New Workspace".

Antigravity wird dich bitten, einen Ordner auszuwählen. Navigiere zum Projektordner, den du in

Schritt 1 erstellt hast, und wähle ihn aus. Dein neuer Workspace erscheint in der linken Seitenleiste

unter „Workspaces" mit dem Namen des ausgewählten Ordners. Stell dir jeden Workspace als

eine individuelle Entwicklungssitzung vor — einen pro Projekt. Du kannst so viele Workspaces

erstellen, wie du brauchst, und jederzeit im Agent Manager zwischen ihnen wechseln.

Schritt 5: Öffne den Editor. Sobald dein Workspace erstellt ist, siehst du seinen Namen in der

Seitenleiste. Klicke auf die drei vertikalen Punkte (⋮) neben dem Workspace-Namen und wähle

dann „Focus Editor". Das öffnet die vollständige VS Code-Umgebung für diesen Workspace, in

der du deinen Code schreibst und bearbeitest.

Klicke auf die drei Punkte neben deinem Workspace-Namen und wähle „Focus Editor".

Claude Code als VS Code-Erweiterung installieren

Jetzt, da der Editor offen ist, ist es Zeit, Claude Code zu installieren. Da der Editor auf VS Code

basiert, hast du Zugriff auf den Extensions-Marketplace. Klicke auf das Extensions-Symbol in der

linken Seitenleiste (oder drücke Ctrl+Shift+X). Gib in der Suchleiste „claude code" ein. Du musst

möglicherweise durch die Ergebnisse scrollen — suche nach „Claude Code for VS Code" von

Anthropic. Sobald du es gefunden hast, klicke auf den Install-Button.

Suche nach „claude code" im Extensions-Marketplace, scrolle nach unten und klicke auf Install.

Nach der Installation schließe das Extensions-Panel und öffne eine neue Datei (oder eine beliebige

Datei in deinem Projekt). Du wirst ein kleines Claude Code-Symbol bemerken, das oben rechts im

Editor erscheint — es sieht aus wie ein kleines oranges Symbol. Klicke darauf, um das Claude

Code-Chat-Panel zu öffnen.

Der Claude Code-Button (eingekreist) erscheint oben rechts im Editor. Klicke darauf, um den

Claude Code-Chat zu öffnen.

Claude Code wird dich bitten, dich mit deinem Anthropic-Account anzumelden (dem mit deinem

Pro-Abonnement). Nach der Anmeldung musst du es konfigurieren. Im Claude Code-Chat-Panel

klicke auf den /-Button unten im Panel. Ein Menü erscheint mit verschiedenen Befehlen. Scrolle

nach unten zum Abschnitt Settings und klicke auf „General config...", um die Claude Code-

Erweiterungskonfiguration zu öffnen.

Klicke auf den „/"-Button unten, scrolle dann zu Settings und wähle „General config...", um die

Konfiguration zu öffnen.

Im sich öffnenden Konfigurationspanel suche nach der Option „Allow Dangerously Skip

Permissions". Aktiviere diesen Schalter. Sobald aktiviert, kannst du „Bypass permissions" als

deinen Berechtigungsmodus auswählen, der es Claude Code erlaubt, vollständig autonom zu

arbeiten — Dateien lesen, Code schreiben, Terminalbefehle ausführen und Änderungen

vornehmen, ohne bei jedem Schritt nach Bestätigung zu fragen.

Aktiviere den „Allow Dangerously Skip Permissions"-Schalter in den Claude Code-Einstellungen

und wähle dann „Bypass permissions".

Wichtig: Mit aktivierten Bypass-Berechtigungen führt Claude Code Aktionen auf deinem

System ohne manuelle Genehmigung aus. Das ist essentiell für einen flüssigen

Entwicklungs-Workflow, bringt aber Verantwortung mit sich. Sei vorsichtig mit dem Code,

den du ausführen lässt, und richte ihn niemals auf nicht vertrauenswürdige Repositories

oder verdächtige URLs. KI-Agenten können durch Prompt-Injection ausgenutzt werden —

bösartige Inhalte, die in Dateien oder Websites versteckt sind und den Agenten dazu

verleiten, schädliche Befehle auszuführen. Überprüfe immer, was Claude Code tut,

besonders bei der Arbeit mit externen Ressourcen.

Wir empfehlen außerdem, die Einstellung zu aktivieren, die „Bypass permissions" als

Standardauswahl für neue Chats festlegt, damit du es nicht jedes Mal manuell auswählen musst,

wenn du eine neue Konversation startest. Schließe jetzt Claude Code und öffne es erneut (indem

du wieder auf den Claude Code-Icon-Button klickst). Ab jetzt siehst du die Option „Bypass

permissions" im Berechtigungswähler-Button unten im Claude Code-Chat-Panel. Klicke darauf,

um sie zu aktivieren.

Wähle „Bypass permissions" aus dem im Screenshot angezeigten Button.

Mit aktivierten Bypass-Berechtigungen führt Claude Code Befehle aus, erstellt Dateien,

bearbeitet Code und führt Terminal-Operationen komplett eigenständig durch — ohne bei jedem

Schritt nach deiner Genehmigung zu fragen. Das ist es, was dir ermöglicht, den gesamten

Entwicklungs-Workflow zu 100% zu automatisieren: Du beschreibst, was du bauen willst, und

Claude Code baut es autonom von Anfang bis Ende. Kein ständiges Klicken auf „Accept" bei jeder

einzelnen Dateiänderung oder Befehlsausführung mehr. Du gibst die Anweisungen, und der Agent

erledigt den Rest.

Dein Kontingent clever verwalten

Etwas, das du von Anfang an wissen solltest: Jede Interaktion mit Claude Code verbraucht Tokens,

und dein Abonnement hat ein Nutzungslimit. Die gute Nachricht ist, dass du genau überwachen

kannst, wie viel du verbraucht hast. Im Claude Code-Chat-Panel klicke auf den /-Button — unter

den verfügbaren Befehlen findest du deine aktuelle Nutzung, die zeigt, wie viele Tokens du

verbraucht hast und wie viel Kapazität du noch hast.

Nicht alle Modelle verbrauchen Tokens gleich schnell. Claude Opus 4.6 ist das intelligenteste und

leistungsfähigste Modell, verbraucht aber auch die meisten Tokens pro Interaktion. Kleinere

Modelle wie Sonnet oder Haiku sind weniger leistungsfähig, haben aber höhere Nutzungslimits

und verbrauchen deutlich weniger Tokens. Unsere Empfehlung: Verwende Opus für komplexe

Aufgaben, die tiefes Reasoning, Änderungen über mehrere Dateien oder architektonische

Entscheidungen erfordern — hier macht seine Intelligenz einen echten Unterschied. Für einfachere

Aufgaben wie schnelle Fixes, kleine Bearbeitungen oder unkomplizierte Fragen wechsle zu einem

leichteren Modell, um deine Opus-Tokens für die Momente aufzusparen, in denen sie wirklich

zählen.

Es gibt noch eine weitere Strategie, um deine Claude-Tokens zu sparen: Nutze den eingebauten

Agenten von Antigravity für Fragen, die nicht Claudes Intelligenzniveau erfordern. Antigravity

unterstützt mehrere Modelle, aber wir empfehlen für diese schnellen Fragen Gemini — da

Antigravity ein Google-Produkt ist, hat Gemini das höchste Nutzungslimit und ist auch das

schnellste Modell auf der Plattform. Brauchst du eine schnelle CSS-Erinnerung? Willst du die

Syntax für einen Git-Befehl wissen? Neugierig, wie eine Bibliothek funktioniert? Frag Antigravity

statt Claude Code. So sparst du deine Claude-Tokens für die schwere Entwicklungsarbeit, wo sie

den größten Unterschied machen.

Wie im früheren Screenshot zu sehen, empfehlen wir, den Claude Code-Chat links und den

Antigravity-Agenten-Chat rechts zu platzieren. Dieses Seite-an-Seite-Layout gibt dir jederzeit

sofortigen Zugriff auf beide Agenten.

Der smarte Workflow: Opus zum Bauen, leichtere Modelle für schnelle Aufgaben,

Antigravity für allgemeine Fragen. So maximierst du den Wert deines Claude-

Abonnements. Wenn dein Claude-Nutzungslimit knapp wird, denk daran, dass du immer

Antigravitys Gemini-Agenten direkt neben dir hast für einfachere Fragen — nutze ihn, um

deine Claude-Tokens für die Entwicklungsaufgaben aufzusparen, die sie wirklich brauchen.

Grundlegende Konfiguration

Unabhängig davon, wie du Claude Code installierst, werden diese Konfigurationsschritte deine

Ergebnisse dramatisch verbessern:

Verwende eine CLAUDE.md-Datei — Platziere eine CLAUDE.md -Datei im Stammverzeichnis

deines Projekts. Diese Datei wird von Claude Code automatisch zu Beginn jeder Sitzung

gelesen. Verwende sie, um deine Projektstruktur, Coding-Konventionen, den Tech-Stack und

alle Regeln zu beschreiben, denen der Agent folgen soll. Stell sie dir als Onboarding-

Dokumentation für deinen KI-Entwickler vor.

Halte dein Projekt organisiert — KI-Agenten arbeiten dramatisch besser mit sauberen, gut

strukturierten Codebasen. Wenn dein Code chaotisch ist, wird der Agent chaotische Ausgabe

produzieren. Gute Ordnerstruktur, klare Namenskonventionen und konsistente Muster

machen einen enormen Unterschied.

Verwende Versionskontrolle — Arbeite immer mit initialisiertem Git. Das gibt dir ein

Sicherheitsnetz. Wenn der Agent einen Fehler macht, kannst du sofort zurücksetzen. Es

ermöglicht dem Agenten auch, Commits für dich zu erstellen, was überraschend nützlich ist,

um nachzuverfolgen, was sich geändert hat und warum.

Unverzichtbare Tools: Git & GitHub CLI

Bevor wir anfangen, irgendetwas zu bauen, müssen zwei Tools auf deinem System installiert sein:

Git und die GitHub CLI (gh). Diese sind fundamental für jeden modernen Entwicklungs-Workflow

und ermöglichen es deinen KI-Agenten, deine Code-Repositories autonom zu verwalten.

Warum Git und GitHub CLI wichtig sind

Git ist das Versionskontrollsystem, das jede Änderung in deinem Projekt verfolgt. Es ist dein

Sicherheitsnetz: Wenn Claude Code einen Fehler macht, kannst du sofort zurücksetzen. Es

ermöglicht dem Agenten auch, Commits zu erstellen, Branches zu verwalten und eine saubere

Historie der Projektentwicklung zu führen — alles automatisch.

GitHub CLI (gh) ist ein Kommandozeilen-Tool, das direkten Zugang zu GitHub vom Terminal aus

bietet. Das ist der Schlüssel zur vollen Automatisierung: Sobald gh installiert und authentifiziert ist,

kann Claude Code Repositories erstellen, Code pushen, Pull Requests verwalten, Repository-

Einstellungen konfigurieren, GitHub Actions für das Deployment einrichten, Secrets hinzufügen

und vieles mehr — alles von seinem Terminal aus, ohne dass du GitHub im Browser öffnen musst.

Git und GitHub CLI installieren

Der einfachste Weg, diese Tools zu installieren, ist, Claude Code oder Antigravity zu bitten, es für

dich zu tun. Sag deinem Agenten einfach: „Installiere Git und die GitHub CLI auf meinem System."

Der Agent erkennt dein Betriebssystem und führt die entsprechenden Installationsbefehle aus.

Unter Windows wird er typischerweise winget verwenden oder die Installer herunterladen; auf

macOS wird er brew verwenden; auf Linux apt oder den Paketmanager deines Systems.

Wenn du sie lieber manuell installieren möchtest, kannst du Git von der offiziellen Website und die

GitHub CLI von der GitHub-Releases-Seite herunterladen. Aber es von der KI erledigen zu lassen

ist schneller und vermeidet häufige Installationsfehler.

GitHub CLI authentifizieren

Nach der Installation musst du dich einloggen, damit gh auf deinen GitHub-Account zugreifen

kann. Auch hier kannst du einfach deinen Agenten fragen: „Logge mich in die GitHub CLI ein." Der

Agent führt gh auth login aus und führt dich durch den Authentifizierungsprozess, der

typischerweise das Öffnen eines Browser-Links und die Eingabe eines Codes umfasst. Sobald

authentifiziert, hat der Agent vollen Zugriff auf deine GitHub-Repositories.

Das ist ein Game-Changer. Mit authentifiziertem gh kannst du Claude Code Dinge sagen

wie: „Erstelle ein neues privates Repository namens my-app, initialisiere das Projekt und

pushe den Code." Oder später: „Richte eine GitHub Action ein, die bei jedem Push auf Main

auf meinen Server deployt." Der Agent erledigt alles — Dateien erstellen, Secrets

konfigurieren, Workflows einrichten — ohne dass du den Editor verlassen musst. So sieht

echte Entwicklungsautomatisierung aus.

3. Dein erstes Projekt: Von Null auf Live

Deine Umgebung ist bereit. Claude Code ist offen, Antigravity läuft, Git und GitHub CLI sind

konfiguriert. Es ist Zeit, etwas Echtes zu bauen. Ab hier wechselt der Kurs vom Setup zur

Strategie — praktische Techniken und Erkenntnisse, die dir beim Bauen mit KI-Agenten einen

echten Vorteil verschaffen.

Nie bei Null anfangen

Das ist der wichtigste Ratschlag in diesem gesamten Kurs: Fang niemals bei Null an.

Auch wenn Claude Opus ein unglaublich fortschrittliches und intelligentes Modell ist, wird es Fehler

machen. Jedes KI-Modell tut das. Es könnte deine Projektstruktur falsch verstehen, eine veraltete

Bibliothek verwenden, ein inkonsistentes Dateilayout erstellen oder Code generieren, der nicht

ganz zusammenpasst, wenn das Projekt wächst. Von einem leeren Ordner zu starten bedeutet,

dass die KI Hunderte von Entscheidungen ohne Bezugspunkt treffen muss — und einige davon

werden unweigerlich falsch sein.

Hier ist die Realität: 99,9% von dem, was du bauen willst, existiert bereits in irgendeiner Form. Ob

es ein E-Commerce-Shop, ein SaaS-Dashboard, eine Portfolio-Website, eine Social-Media-App

oder eine Buchungsplattform ist — jemand hat bereits etwas Ähnliches gebaut. Und viele dieser

Projekte sind Open-Source, als Vorlagen auf GitHub verfügbar, bereit zum Klonen und Anpassen.

Dein Workflow sollte immer gleich beginnen: Suche zuerst nach einer Vorlage. Geh auf GitHub

und suche nach Open-Source-Projekten, die zu dem passen, was du bauen willst. Finde eines, das

deiner Vision nahekommt, klone es in deinen Projektordner, und richte dann Claude Code darauf

aus. Statt von Null zu bauen, modifiziert, verbessert und individualisiert der Agent jetzt eine

bestehende, funktionierende Codebasis. Der Unterschied in Qualität und Geschwindigkeit ist

enorm.

Vorlagen sind kein Schummeln — sie sind Strategie. Professionelle Entwickler verwenden

ständig Boilerplates und Starter-Kits. Du kopierst nicht jemandes Produkt. Du verwendest

ein strukturelles Fundament und baust dein eigenes einzigartiges Produkt darauf auf. Die KI

performt dramatisch besser, wenn sie bestehenden Mustern folgen kann, statt alles aus

dem Nichts zu erfinden.

Den richtigen Stack wählen

Wenn deine Vorlagensuche kein Ergebnis bringt und du wirklich ein neues Projekt starten musst,

kann die Technologie, die du wählst, einen Unterschied machen — besonders bei der Arbeit mit KI-

Agenten. Allerdings gibt es keine einzig richtige Wahl. Der beste Stack ist der, der dich am

schnellsten zu einem funktionierenden Produkt bringt.

Claude Code ist, wie alle LLMs, grundsätzlich besser darin, webbasierten Code zu schreiben:

HTML, CSS, JavaScript und TypeScript. Das ist die Sprache des Internets, und darauf wurden diese

Modelle am meisten trainiert. Je näher dein Projekt bei Web-Technologien bleibt, desto besser

wird die KI performen.

Für Webanwendungen ist Next.js eine ausgezeichnete Wahl, wenn du es finden kannst. Es ist ein

modernes React-Framework mit eingebautem Server-Side Rendering, das entscheidend für SEO

ist. Claude Code funktioniert außergewöhnlich gut mit Next.js-Projekten: Es versteht das

dateibasierte Routing, API-Routen, Server-Komponenten und das gesamte Ökosystem. Du wirst

eine enorme Anzahl von Next.js-Vorlagen auf GitHub finden, für praktisch jede Art von Anwendung.

Für Desktop-Anwendungen (ausführbare Dateien für Windows, macOS oder Linux) ist Electron

eine großartige Option. Electron ermöglicht es dir, Desktop-Apps mit HTML, CSS und JavaScript

zu bauen — denselben Web-Technologien, in denen Claude hervorragend ist. Da die

Benutzeroberfläche im Grunde eine Webseite ist, die in einem nativen Fenster gerendert wird,

kann die KI schöne, funktionale Desktop-Anwendungen mit derselben Leichtigkeit wie eine

Website erstellen.

Aber hier ist die wichtige Nuance: Eine gut gebaute Vorlage in einem älteren Stack ist fast immer

besser als bei Null mit einem modernen anzufangen. Du könntest ein PHP-, jQuery- oder Laravel-

Projekt finden, das genau das ist, was du brauchst — komplett, gut strukturiert, praxiserprobt, mit

allen Features bereits implementiert. In dem Fall: Verwende es. KI-Agenten können mit jeder

Technologie arbeiten, und die Zeitersparnis durch ein solides, fertiges Fundament überwiegt bei

Weitem die theoretischen Vorteile eines neueren Frameworks. Claude Code kann PHP-, Python-,

Ruby- oder jede andere Codebasis problemlos verstehen und modifizieren.

Die Priorität ist einfach: Finde die beste verfügbare Vorlage. Wenn du zwei Vorlagen ähnlicher

Qualität findest und eine Next.js verwendet, während die andere PHP nutzt, nimm Next.js. Aber

wenn die PHP-Vorlage vollständiger, funktionsreicher und besser gepflegt ist — wähle diese ohne

zu zögern. Qualität und Vollständigkeit des Ausgangspunkts zählen mehr als die Modernität des

Stacks.

Die Faustregel: Verwende, was immer dich deinem Ziel am nächsten bringt. Strebe

moderne Web-Technologien an (Next.js, Electron, React Native), wenn verfügbar, aber

lehne niemals eine großartige Vorlage ab, nur weil sie einen älteren Stack verwendet. Die

Zeitersparnis durch ein solides Fundament ist immer wertvoller als Stack-Reinheit.

Praktisches Beispiel: Eine Vorlage finden

Nehmen wir an, du willst einen E-Commerce-Shop bauen. Statt Claude Code zu sagen „Baue mir

eine E-Commerce-Seite von Grund auf", öffne GitHub und suche nach etwas wie „nextjs

ecommerce". Du wirst Dutzende fertige Projekte mit Produktlisten, Warenkörben, Checkout-

Abläufen und Zahlungsintegration finden, die bereits gebaut sind.

Eine schnelle GitHub-Suche nach „nextjs ecommerce" zeigt bereits mehrere vielversprechende

Vorlagen.

Etwas Wichtiges, das du im Hinterkopf behalten solltest: Viele Vorlagen auf GitHub sind

Freemium-Projekte — der Kern ist Open-Source und kostenlos, aber einige Features oder

Premium-Versionen erfordern eine Bezahlung. Überprüfe immer die README und die Lizenz des

Repositorys, bevor du dich für eine Vorlage entscheidest. Vermeide alles, das bezahlte

Abonnements oder versteckte Kosten erfordert, die du nicht brauchst.

Wenn wir die Suchergebnisse betrachten, fällt fullstack-nextjs-ecommerce auf — und es ist ein

ausgezeichneter Ausgangspunkt. Analysieren wir warum. Das Projekt verwendet Next.js mit

TypeScript, was genau das ist, was wir für KI-gestützte Entwicklung wollen. Aber was wirklich

heraussticht, ist, was bereits integriert ist: Stripe für Zahlungen, PostgreSQL mit Prisma als

Datenbank und NextAuth für Authentifizierung. Das sind drei der kritischsten — und

fehleranfälligsten — Teile jeder Webanwendung.

Dass Stripe bereits integriert ist, ist besonders wertvoll. Zahlungsabwicklung umfasst Webhooks,

Session-Management, Fehlerbehandlung und Randfälle, die überraschend knifflig sein können.

Wenn etwas bei Zahlungen schiefgeht, sind deine Kunden die Leidtragenden — fehlgeschlagene

Abbuchungen, doppelte Zahlungen oder defekte Checkout-Abläufe sind die Art von Bugs, die

Vertrauen zerstören und dich echtes Geld kosten. Mit einer Vorlage zu starten, die bereits eine

funktionierende Stripe-Integration hat, erspart dir diese Kopfschmerzen.

Das Projekt verwendet auch PostgreSQL als Datenbank, was eine solide Wahl ist. Postgres ist

zuverlässig, gut dokumentiert, bietet etwas bessere Sicherheitsstandards im Vergleich zu

Alternativen wie MySQL und kann leicht auf Amazon AWS, Hetzner oder ähnlichen Anbietern

gehostet werden — Server-Setup und Deployment behandeln wir im nächsten Kapitel. Dass

NextAuth bereits verdrahtet ist, bedeutet, dass die Benutzer-Authentifizierung direkt

einsatzbereit ist, ein weiteres komplexes Puzzleteil, das du nicht von Grund auf bauen musst.

Das ist die Kraft, mit der richtigen Vorlage zu starten: Statt Tage (oder Wochen) damit zu

verbringen, Zahlungen, Datenbank und Authentifizierung einzurichten — alles Dinge, bei denen

leicht etwas schiefgehen kann — startest du mit einem Projekt, in dem diese kritischen Systeme

bereits funktionieren. Du kannst dich dann voll darauf konzentrieren, das Produkt nach deiner

Vision anzupassen: das Design ändern, deine Produkte hinzufügen, die Geschäftslogik

modifizieren und die Features bauen, die deinen Shop einzigartig machen.

Sobald du deine Vorlage gefunden hast, ist der nächste Schritt einfach: Lade sie herunter und

platziere sie in deinem Workspace-Ordner. Öffne diesen Ordner mit Claude Code (oder

Antigravity) und fang an zu arbeiten. Du kannst Claude Code anweisen, die Vorlage direkt zu

modifizieren — das Branding ändern, neue Seiten hinzufügen, das Layout überarbeiten, neue

Features integrieren — oder du kannst die Vorlage als Referenz für dein eigenes Projekt

verwenden. Selbst wenn du etwas leicht Anderes baust, bedeutet die Vorlage im selben

Workspace, dass Claude Code sie ansehen, die Code-Muster studieren und als Grundlage für das

verwenden kann, was er schreibt.

Das ist ein entscheidender Punkt: Gib Claude Code immer etwas als Referenz. Wenn der Agent

eine solide, funktionierende Codebasis als Vorlage hat, schreibt er deutlich besseren Code. Er

folgt denselben Mustern, verwendet dieselben Konventionen und produziert konsistente und

zuverlässige Ausgabe. Wenn er nichts als Referenz hat und alles von Grund auf generieren muss,

passieren Fehler — inkonsistente Dateistrukturen, falsche Bibliotheksversionen, Code der nicht

zusammenpasst. Eine Vorlage wirkt als Anker, der die KI auf Kurs hält und hochwertige, kohärente

Ergebnisse liefert.

Was, wenn die Vorlage keine Zahlungen oder Datenbank hat? Das ist auch in Ordnung.

Dieser Kurs enthält fertige Stripe-Integrationsdateien, die du Claude Code direkt geben

kannst, um Zahlungen in jedes Projekt zu integrieren. Für die Datenbank empfehlen wir

PostgreSQL oder welche Datenbank die Vorlage bereits verwendet — kämpfe nicht gegen

die Entscheidungen der Vorlage an, es sei denn, es gibt einen triftigen Grund. Das Gleiche

gilt für die Authentifizierung: Wenn die Vorlage NextAuth, Clerk oder ein anderes Auth-

System verwendet, arbeite damit. Das Ziel ist, das bereits Gebaute zu nutzen, nicht alles zu

ersetzen.

4. Vom Code zur Produktion

Dein Produkt ist gebaut. Jetzt muss es Zahlungen akzeptieren, auf einem Server laufen und

schnell und sicher für Nutzer weltweit sein. Dieses Kapitel behandelt die wesentlichen Services,

die dein Projekt von lokalem Code in ein live geschaltetes, produktionsreifes Business

verwandeln.

Ein Hinweis zu diesem Kapitel. Wir halten die Dinge hier knapp und auf den Punkt. Unser Ziel

ist es, dir zu sagen, was du tun musst und warum — nicht lange Tutorials zu schreiben, die

deine Zeit verschwenden. Jedes LLM (Claude, Gemini, ChatGPT) kann die Details erklären,

dich durch jeden Schritt führen und deine Fragen weit besser beantworten als eine

statische Seite. Wann immer etwas unklar ist, frag einfach deinen Agenten: „Ich folge einem

Kurs und dort steht, dass ich [X machen] muss. Kannst du mir erklären, was das bedeutet

und mich durchführen?" Das ist schneller, persönlicher und immer aktuell.

Zahlungen mit Stripe

Wenn dein Produkt etwas verkauft, brauchst du einen Zahlungsanbieter. Stripe ist der

Industriestandard: zuverlässig, gut dokumentiert und von praktisch jedem KI-Agenten unterstützt,

weil es so weit verbreitet ist.

Folgendes musst du tun:

Erstelle ein Stripe-Konto auf stripe.com. Du bekommst API-Schlüssel (einen öffentlichen

Schlüssel für das Frontend, einen geheimen Schlüssel für das Backend) und Zugang sowohl

zum Testmodus (simulierte Zahlungen für die Entwicklung) als auch zum Live-Modus (echtes

Geld).

Richte Webhooks im Stripe-Dashboard ein. Webhooks sind URLs auf deinem Server, die

Stripe aufruft, wenn etwas passiert — eine Zahlung ist erfolgreich, ein Abonnement wird

verlängert, eine Abbuchung schlägt fehl. So erfährt deine App, wann ein Abonnement aktiviert,

eine Bestellung bestätigt oder ein Fehler behandelt werden muss. Du brauchst Webhooks

sowohl für lokales Testen (Stripe hat ein CLI-Tool, das Events an deinen Localhost weiterleitet)

als auch für die Produktion (die auf deinen Live-Server zeigen). Bring immer erst alles lokal zum

Laufen, bevor du live gehst.

Integriere Stripe in dein Projekt. Wenn deine Vorlage bereits Stripe hat, trage einfach deine

API-Schlüssel ein. Wenn nicht, enthält dieser Kurs fertige Stripe-Integrationsdateien — lege

sie in deinen Workspace und weise Claude Code an, sie zu integrieren. Stripe unterstützt

einmalige Zahlungen und wiederkehrende Abonnements, beides mit gehosteten Checkout-

Seiten, die Kartenvalidierung, 3D Secure und PCI-Compliance für dich übernehmen.

Eine entscheidende Regel: Verifiziere Zahlungen immer serverseitig über Webhooks, vertraue

niemals dem Frontend. Der Webhook ist Stripe, der deinem Server direkt mitteilt, dass tatsächlich

Geld geflossen ist — es ist die einzige zuverlässige Wahrheitsquelle.

Hosting: AWS, Hetzner & mehr

Deine App muss irgendwo leben. Die gute Nachricht: AWS gibt dir ein Free Tier, wenn du dich

anmeldest — für ein volles Jahr bekommst du einen t2.micro-Server und eine Micro-Datenbank

komplett kostenlos. Das reicht, um dein erstes Projekt zu hosten, während du die Idee validierst

und erste Nutzer gewinnst.

Du weißt nicht, wie du ein AWS-Konto einrichtest oder das Free Tier nutzt? Frag einfach Claude

oder Antigravity — sie führen dich durch jeden Schritt.

Wenn du über das Free Tier hinauswächst, hier ist, was du über Server-Dimensionierung wissen

musst:

t3.small ist der Sweet Spot für die meisten Apps — gute CPU, genug RAM und vernünftige

Preise (~16$/Monat auf AWS). Das „t" bezieht sich auf die Instanzgeneration; ältere

Generationen (t2 usw.) können manchmal mehr kosten für weniger Leistung, also bleib bei der

neuesten verfügbaren.

Hetzner ist eine europäische Alternative, die deutlich günstiger ist — du bekommst Leistung

vergleichbar mit einem t3.small für ungefähr 4$/Monat. Das ist ungefähr 4x günstiger als AWS

für ähnliche Spezifikationen.

Nicht jede App braucht einen Server. Wenn dein Projekt eine statische Seite oder eine

JAMstack-App ist, brauchst du möglicherweise gar keinen dedizierten Server. Plattformen wie

Vercel, Netlify oder sogar Cloudflare Pages können es kostenlos oder nahezu kostenlos

hosten. Frag immer dein LLM: „Was ist das beste Hosting für meine spezifische App?"

Unsere Empfehlung: Starte mit dem AWS Free Tier für dein erstes Jahr und evaluiere dann, ob

Hetzner oder ein anderer Anbieter für dein Budget und den Standort deiner Nutzer sinnvoller ist.

Wenn die meisten deiner Nutzer in Europa sind, geben dir Hetzners deutsche Server eine geringere

Latenz. Wenn dein Publikum global oder US-basiert ist, könnten AWS-Regionen besser passen.

SSH-Schlüssel & KI-Serververwaltung. Damit Claude Code sich mit deinem Server

verbinden und ihn remote verwalten kann, musst du einen SSH-Schlüssel einrichten. Bitte

Claude, einen zu generieren und auf deinem Server zu konfigurieren. Einmal verbunden,

kann Claude Code deployen, Services verwalten, Probleme beheben — alles von deinem

Terminal. Für Serververwaltungsaufgaben empfehlen wir Opus für die besten Ergebnisse,

obwohl Sonnet auch funktioniert, wenn du Tokens sparen willst (mit einer etwas höheren

Fehlerwahrscheinlichkeit).

Cloudflare: Performance & Schutz

Sobald deine App auf einem Server läuft, brauchst du etwas, das davor sitzt, um sie zu schützen

und zu beschleunigen. Das ist Cloudflare. Die gute Nachricht: Der kostenlose Plan reicht für die

überwiegende Mehrheit der Websites völlig aus. Du brauchst keinen bezahlten Plan.

Aber zuerst brauchst du einen Domainnamen. Wir empfehlen, einen direkt bei Cloudflare oder

Namecheap zu kaufen — beide sind zuverlässig und fair bepreist. Sobald du deine Domain hast,

musst du das DNS konfigurieren, damit es auf die IP-Adresse deines AWS- oder Hetzner-Servers

zeigt. Frag einfach dein LLM: „Ich habe eine Domain bei [Cloudflare/Namecheap] gekauft. Wie

richte ich DNS ein, damit es auf meinen Server unter [deine IP] zeigt?" Es wird dich durchführen.

Warum ist Cloudflare so wichtig? Es schützt deine Seite vor DDoS-Angriffen, verschiedenen

Sicherheitslücken und gängigen Web-Schwachstellen. Es bietet auch einen globalen Cache, was

bedeutet, dass deine Inhalte von Servern in der Nähe deiner Nutzer ausgeliefert werden, was deine

Seite weltweit schneller macht. Ohne einen Service wie Cloudflare setzt du deine Seite

ernsthaften Risiken aus — besonders jetzt, im KI-Zeitalter, wo jeder KI-Tools verwenden kann, um

Schwachstellen zu finden, Fehlkonfigurationen auszunutzen oder sogar Daten von schlecht

geschützten Websites zu stehlen. Überspring das nicht.

Schneller Tipp: Flexible SSL-Modus. Bei der Einrichtung von Cloudflare kannst du den

Flexible SSL-Modus wählen. Das bedeutet, die Verbindung zwischen Cloudflare und

deinem Server verwendet einfaches HTTP, aber die Verbindung zwischen Cloudflare und

deinen Endnutzern ist HTTPS — Besucher sehen also ein sicheres Schloss-Symbol. Das

erspart dir die Konfiguration von SSL-Zertifikaten auf deinem Server, was großartig für den

schnellen Einstieg ist. Für Produktions-Apps, die sensible Daten verarbeiten, solltest du

irgendwann auf den Full-Modus umsteigen (durchgehend verschlüsselt). Aber für deine

ersten Tests und Launches ist Flexible völlig in Ordnung und spart viel Setup-Zeit. Frag dein

LLM, um die Unterschiede zu erklären, wenn du unsicher bist, welcher Modus zu deinem

Projekt passt.

Cloudflare bietet weit mehr als nur Schutz. Der kostenlose Plan enthält leistungsstarke Funktionen,

die viele Entwickler gar nicht kennen:

Cloudflare Pages — kostenloses statisches Hosting für Frontend-Apps (React, Next.js Static

Export, Vue, etc.). Du pushst auf GitHub, Cloudflare baut und deployt automatisch. Null

Konfiguration, null Kosten. Perfekt für Landing Pages, Portfolios und JAMstack-Apps.

Edge Functions (Workers) — führe serverlosen Code am Edge aus, nahe bei deinen Nutzern,

im kostenlosen Plan. Ideal für API-Routen, Weiterleitungen, A/B-Testing und leichte Backend-

Logik ohne dedizierten Server.

CDN & Caching — deine statischen Assets (Bilder, CSS, JS) werden global gecacht, sodass

deine Seite von überall auf der Welt blitzschnell lädt.

Die entscheidende Frage ist: Braucht deine App wirklich einen dedizierten Server, oder kann

Cloudflare sie kostenlos hosten? Frag Claude: "Ich baue [beschreibe deine App]. Brauche ich

einen dedizierten Server auf AWS/Hetzner, oder kann ich Cloudflare Pages und Workers kostenlos

nutzen?" Claude analysiert deinen spezifischen Fall und sagt dir die beste Option. Du könntest

überrascht sein, wie viele Projekte vollständig auf Cloudflares kostenlosem Plan laufen können.

API-Keys: Alles automatisieren

Hier ist ein bahnbrechender Tipp, den die meisten Tutorials auslassen: Erstelle API-Keys für deine

Hosting-Provider und gib sie Claude. So kann Claude deine Infrastruktur direkt vom Terminal aus

verwalten — kein Klicken auf Dashboards, kein Kopieren und Einfügen, keine manuelle Arbeit.

Cloudflare API-Key — gehe zu deinem Cloudflare-Dashboard → My Profile → API Tokens →

erstelle einen Token. Damit kann Claude automatisch DNS-Einträge konfigurieren, Pages-

Projekte einrichten, Workers verwalten, SSL-Einstellungen aktualisieren und vieles mehr. Sag

Claude: "Hier ist mein Cloudflare API-Token. Richte DNS für meine Domain ein, die auf die IP

meines Servers zeigt." In Sekunden erledigt.

AWS Access Keys — gehe zu AWS IAM → erstelle einen Access Key. Damit kann Claude EC2-

Instanzen verwalten, Security Groups konfigurieren, RDS-Datenbanken einrichten, S3-

Buckets verwalten und deine gesamte AWS-Infrastruktur programmatisch handhaben. Sag

Claude: "Hier sind meine AWS-Zugangsdaten. Starte eine t3.small EC2-Instanz in us-east-1

und konfiguriere die Security Groups für eine Web-App."

Hetzner API-Token — gehe zu deiner Hetzner Cloud Console → Projekt → Sicherheit → API-

Tokens → generiere einen. Claude kann dann Server erstellen, Firewalls konfigurieren,

Snapshots verwalten und deine gesamte Hetzner-Infrastruktur handhaben. Sag Claude: "Hier

ist mein Hetzner API-Token. Erstelle einen CX22-Server in Nürnberg mit Ubuntu."

Sicherheitshinweis zu API-Keys. Diese API-Keys sind mächtig — behandle sie wie

Passwörter. Committe sie niemals in Git, teile sie nicht öffentlich und füge sie nicht in Chat-

Interfaces ein, denen du nicht vertraust. Speichere sie in einer .env -Datei oder übergib sie

direkt an Claude in deiner Terminal-Sitzung. Wenn ein Key kompromittiert wird, widerrufe

ihn sofort im Dashboard des Providers und generiere einen neuen. Verwende beim Erstellen

von API-Tokens immer das Prinzip der geringsten Rechte: vergib nur die Berechtigungen,

die tatsächlich benötigt werden, nicht vollen Admin-Zugang.

Die Kombination dieser API-Keys mit Claude ist unglaublich mächtig. Du kannst buchstäblich

sagen: "Ich habe eine Next.js-App. Deploye sie auf Cloudflare Pages, richte die Custom Domain

ein und konfiguriere das DNS — hier sind meine API-Keys." Und Claude macht alles automatisch.

Oder: "Erstelle eine EC2-Instanz auf AWS, installiere Node.js und PM2, konfiguriere nginx, richte

Cloudflare DNS ein und deploye meine App." Komplettes Infrastruktur-Setup in Minuten, nicht

Stunden.

CI/CD mit GitHub Actions

Erinnerst du dich, als wir Git und GitHub CLI in Kapitel 2 eingerichtet haben? Hier zahlt sich alles aus.

Mit authentifiziertem gh kannst du Claude Code anweisen, dein Projekt in ein privates GitHub-

Repository zu pushen, GitHub Actions einzurichten, alle notwendigen Secrets zu konfigurieren

(den SSH-Schlüssel deines Servers, Umgebungsvariablen usw.) und eine automatische

Deployment-Pipeline zu erstellen — alles von seinem Terminal, ohne dass du die GitHub-

Oberfläche anfasst.

Die Idee ist einfach: Sobald GitHub Actions konfiguriert ist, deployt es jedes Mal automatisch auf

deinen Server, wenn Claude Code Code in dein Repository pusht. Kein manuelles SSH, kein

Kopieren von Dateien, kein Ausführen von Befehlen auf dem Server selbst. Claude pusht, GitHub

Actions greift es auf, verbindet sich per SSH mit deinem AWS- oder Hetzner-Server und deployt

alles. Voll automatisiert.

Sag Claude einfach: „Pushe dieses Projekt in ein neues privates Repository auf GitHub, richte eine

GitHub Action ein, die bei jedem Push auf Main auf meinen Server deployt. Hier sind meine Server-

IP und mein SSH-Schlüssel." Claude weiß bereits, wie das geht — er erstellt die Workflow-Datei,

fügt den SSH-Schlüssel und die Server-IP als GitHub-Secrets hinzu und konfiguriert die gesamte

Pipeline. Genau dafür haben wir die GitHub CLI vorher installiert.

Stolperfalle dynamische IP. Statische IPs kosten bei AWS und Hetzner üblicherweise extra,

also wirst du wahrscheinlich eine dynamische IP verwenden, um Geld zu sparen. Das

bedeutet, jedes Mal wenn du deinen Server stoppst und neu startest, ändert sich die IP.

Wenn das passiert, musst du sie an zwei Stellen aktualisieren: im Cloudflare-DNS-Eintrag

und im SERVER_IP -GitHub-Secret. Weise Claude an, die Server-IP als SERVER_IP -Secret in

GitHub Actions zu speichern, damit du bei einer Änderung nur eine Variable aktualisieren

musst. Sag Claude auch, dass er dich daran erinnern soll, die IP zu überprüfen und zu

aktualisieren, wenn ein Deployment fehlschlägt — eine geänderte IP ist fast immer der

Grund.

5. Marketing- & SEO-Taktiken

Dein Produkt ist live. Jetzt muss die Welt erfahren, dass es existiert. Das effektivste Marketing

für Indie-Produkte ist organisch — kostenlos, kreativ und überraschend wirkungsvoll, wenn man

es richtig macht. Dieses Kapitel behandelt die exakten Taktiken, die wir verwenden.

Strategien für organisches Wachstum

Seien wir ehrlich: Das beste Marketing sieht nicht nach Marketing aus. Das Internet ist mit

Werbung übersättigt, und die Menschen haben einen Reflex entwickelt, alles zu ignorieren, was

sich wie eine Promotion anfühlt. Was tatsächlich funktioniert, ist Stealth-Marketing — Inhalte, die

wie echte Informationen, eine Frage oder eine Empfehlung aussehen statt wie eine Werbeanzeige.

Menschen sind von Natur aus neugierig und helfen gerne mit Vorschlägen. Nutze das.

Reddit ist eine der mächtigsten Plattformen dafür. Es ist riesig, wird von Google stark indexiert und

ist voller Nischen-Communities, in denen sich deine Zielgruppe bereits aufhält. Aber hier ist der

Schlüssel: Poste niemals aggressive Werbung. Schreib nicht „Schaut euch meine tolle neue Seite

an!" — das wird heruntergestimmt, entfernt oder gebannt. Schreib stattdessen etwas wie:

„Kann jemand Seiten empfehlen, die ähnlich sind wie [bekannter Konkurrent] oder [deine

Seite]? Suche nach Alternativen."

„Hat jemand [deine Produktkategorie] ausprobiert? Ich habe [deine Seite] gefunden, bin aber

neugierig auf andere Optionen."

Beantworte Fragen in relevanten Subreddits und erwähne dein Produkt dort natürlich, wo es

wirklich hilft.

So funktioniert die Mehrheit des erfolgreichen Indie-Marketings auf Reddit. Du lügst nicht — du

rahmst dein Produkt als Entdeckung in einem echten Gespräch ein. Menschen klicken, weil sie

neugierig sind, nicht weil sie sich verkauft fühlen. Und hier ein Bonus: Reddit-Posts werden von

Google indexiert, daher kann ein gut platzierter Thread dir Monate oder sogar Jahre lang

organischen Suchtraffic bringen.

Du kannst auch einen Reddit-Post sponsern mit einem kleinen Budget, um ihn vorübergehend zu

boosten. Das pusht ihn höher in den Suchergebnissen, lässt Google ihn schneller indexieren und

gibt ihm erste Sichtbarkeit. Frag dein LLM, wie Reddit-Post-Promotion funktioniert und welches

Budget sinnvoll ist.

Der Funnel-Trick. Baue auf deiner Startseite oder Landing Page etwas ein, das Menschen

unabhängig von deinem Hauptprodukt anzieht — ein kostenloses Tool, ein Trendthema,

nützliche Informationen oder etwas, das gerade beliebt ist. Das wirkt als Funnel: Leute

kommen wegen des kostenlosen/interessanten Inhalts, entdecken dein Produkt, und ein

Prozentsatz davon konvertiert. Stell es dir als Köder vor, der echten Mehrwert bietet und

gleichzeitig zu dem führt, was du verkaufst.

SEO, Content & Distribution

Bevor du mit irgendeinem Marketing anfängst, richte dein Analytics und Tracking ein. Du brauchst

zwei Dinge:

Google Analytics — Füge den Tracking-Code zu deiner Seite hinzu (bitte Claude, ihn zu

integrieren). Es gibt auch eine Mobile App, mit der du deinen Traffic jederzeit vom Handy aus

überprüfen kannst. Das zeigt dir Gesamtbesuche, Nutzerverhalten, Traffic-Quellen und

Conversion-Daten.

Google Search Console — Richte das ein und verbinde es mit Google Analytics. Search

Console trackt speziell deinen organischen Google-Traffic: Welche Suchanfragen Menschen

auf deine Seite bringen, wie oft du in den Suchergebnissen erscheinst und deine Klickraten.

Frag dein LLM, wie du beide Tools einrichtest und verbindest.

Wenn du Budget zur Verfügung hast, kann Google Ads dir einen Anfangsschub geben. Kurzzeitig

Anzeigen zu schalten hilft, Vertrauen bei Googles Algorithmus aufzubauen und bringt frühen

Traffic, während dein organisches SEO wächst. Aber die Kosten summieren sich schnell, also

betrachte es als kurzfristigen Beschleuniger, nicht als Langzeitstrategie. Dein LLM kann Google

Ads-Setup und Budgetierung im Detail erklären.

Für SEO selbst fang mit den Basics an. Öffne die DevTools deines Browsers (F12), gehe zu

Lighthouse und erstelle einen Bericht. Das gibt dir Bewertungen für Performance, Barrierefreiheit,

Best Practices und SEO. Behebe, was es dir sagt — und ja, du kannst Claude Code bitten, die Fixes

zu übernehmen.

Wichtige SEO-Maßnahmen:

Füge Übersetzungen hinzu zu deinen Seiten. Mehrsprachige Unterstützung erhöht deine

Reichweite dramatisch. Bitte Claude Code, die Internationalisierung für dein Projekt

einzurichten.

Füge ordentliche Meta-Tags hinzu — Titel, Beschreibung, Open Graph-Tags für Social-Media-

Sharing, strukturierte Daten. Diese beeinflussen direkt, wie deine Seite in den Google-

Suchergebnissen erscheint.

Erstelle und übermittle eine Sitemap. Generiere eine aktuelle Sitemap und lade sie in die

Google Search Console hoch. Das sagt Google genau, welche Seiten auf deiner Website

existieren, und hilft dabei, dass sie schneller indexiert werden.

SEO braucht Geduld. Erwarte keinen organischen Traffic über Nacht — es dauert Wochen

oder Monate, bis Google deine Seiten richtig indexiert und rankt. Aber wenn es einmal

greift, ist es kostenloser Traffic, der immer weiter kommt, ohne dass du einen Cent

ausgibst. Die Klicks, für die du sonst Hunderte Euro über Google Ads bezahlen würdest,

kommen kostenlos durch die organische Suche. In der Zwischenzeit investiere die Arbeit

auf sozialen Plattformen wie Reddit, um erste Sichtbarkeit und Backlinks aufzubauen. SEO

ist ein Langzeitspiel, aber es ist die wertvollste Marketing-Investition, die du machen

kannst.

Der aufkommende Trend: KI-gesteuerter Traffic

Es gibt eine neue und schnell wachsende Traffic-Quelle, der die meisten Menschen noch keine

Beachtung schenken: LLMs, die deine Seite empfehlen. ChatGPT, Gemini, Claude und andere KI-

Assistenten werden zunehmend als Suchmaschinen genutzt. Wenn jemand fragt „Was ist eine gute

Seite für [deine Produktkategorie]?", können und werden diese Modelle bestimmte Websites

empfehlen — und das bringt echten Traffic. Ein erheblicher Teil unserer eigenen Besuche kommt

von ChatGPT und anderen LLMs.

Um davon zu profitieren, geh zu deinem Cloudflare-Dashboard und stelle sicher, dass du die

Option deaktivierst, die KI-Crawler blockiert. Viele Seiten blockieren KI-Bots standardmäßig,

was verhindert, dass LLMs von deinen Inhalten erfahren. Indem du KI-Crawlern den Zugriff auf

deine Seite erlaubst, lässt du diese Modelle deine Seiten indexieren, verstehen was du anbietest,

und dich möglicherweise zukünftig Nutzern empfehlen. Das ist im Grunde kostenloses SEO für das

KI-Zeitalter — und der Boost kann enorm sein.

Denke über Google hinaus. Traditionelles SEO zielt auf die Google-Suche ab. Aber KI-

gesteuerte Empfehlungen werden zu einer bedeutenden Traffic-Quelle — und dieser Trend

beschleunigt sich nur. Stelle sicher, dass deine Seite für KI-Crawler zugänglich ist, klare und

beschreibende Inhalte hat und gut strukturiert ist, damit LLMs leicht verstehen können, was

du anbietest. Die Seiten, die sich jetzt für KI-Entdeckung positionieren, werden einen

massiven Vorteil haben, wenn dieser Kanal wächst.

Vielen Dank!

Vielen Dank, dass du diesen Kurs gekauft und uns dein Vertrauen, deine Zeit und dein

Geld geschenkt hast. Wir hoffen aufrichtig, dass du ihn wertvoll gefunden hast und er

dir hilft, etwas Echtes zu bauen.

Wir würden gerne von dir hören. Tritt unserer Discord-Community bei auf

apifreellm.com — dort sind wir unterwegs, teilen Updates und helfen uns gegenseitig.

Wenn du einen Moment hast, schreib uns eine Bewertung und sag uns, was du denkst.

Was fandest du am nützlichsten? Was hat gefehlt? Was könnte besser sein? Wir sind

wirklich an deinem Feedback interessiert — dieser Kurs ist ein lebendiges Projekt und

wir möchten ihn ständig verbessern, basierend auf dem, was du tatsächlich brauchst.

Wir sehen uns auf Discord. Jetzt geh und bau etwas Großartiges.

https://apifreellm.com/

