
AI-Powered
Development

FROM IDEA TO PRODUCTION

The complete all-in-one guide to build your own website, app, or

startup from scratch. Master AI agents and tools, integrate

payments, deploy your server, and learn marketing tricks to grow

organically.

apifreel lm.com

Version 1.0 — February 2026

Table of Contents

1. Introduction

The World Has Changed

Why This Course Exists

2. The AI-First Development Stack

The AI Agent Landscape

Choosing & Configuring Your Agent

Essential Tools: Git & GitHub CLI

3. Your First Build: Zero to Live

Never Start From Scratch

Choosing the Right Stack

4. From Code to Production

Payments with Stripe

Hosting: AWS, Hetzner & Beyond

Cloudflare: Performance & Protection

CI/CD with GitHub Actions

5. Marketing & SEO Tactics

Organic Growth Strategies

SEO, Content & Distribution

Bonus: Ready-to-Use Source Codes

1. Introduction

You are reading this right now because somewhere, somehow, a combination of marketing

strategies, SEO techniques, and smart positioning brought this course to your screen. That

alone should tell you something: the tactics in this guide actually work. And yes, you will learn

every single one of them.

The World Has Changed

Software development is no longer what it used to be. A few years ago, building a web application

required months of work, a team of developers, and a significant budget. Today, a single person

with the right tools and the right knowledge can build and launch a production-ready application in

days, not months.

This course was written by professionals who work in the industry and use AI agentic tools daily to

build real products. We don't teach theory from a textbook. We teach what actually works in the

real world, right now.

Why This Course Exists

AI and LLMs are now better and faster executors than humans. They can write code, debug it,

refactor it, and deploy it at a speed no human can match. But there's something they

fundamentally lack: ideas.

AI models are extraordinary executors, but they are not innovators. They don't see a gap in

the market and think "I could build something to fix that." That's your job. Your role is to be

the architect of ideas. The AI is your builder.

When you give poor instructions to an LLM, it will still produce something. It won't stop to explain

what would actually be better. The quality of what you build is directly proportional to the quality of

your knowledge. This course bridges that gap.

This is not just a development course. This is a complete blueprint for going from an idea to a live,

revenue-generating product. Including extremely effective marketing and SEO tactics — the

same techniques that brought you to this very page.

2. The AI-First Development Stack

The tools you choose will define how fast you move. In this chapter, we break down the AI

coding agents available today, help you pick the right one, and teach you the prompting

strategies that separate amateurs from professionals.

Note: This guide is written using Windows, but all the tools and steps work identically on

macOS and Linux. Google Antigravity, Claude Code, and every other application discussed

in this course are fully cross-platform. If you're on a Mac or Linux machine, simply follow the

same steps — the interfaces and workflows are the same.

The AI Agent Landscape

The AI coding tools space has exploded. But not all tools are created equal. Some are glorified

autocomplete engines. Others are full autonomous agents that can read your entire codebase,

plan a strategy, execute changes across multiple files, run tests, and fix errors on their own.

Understanding the difference is critical.

There are two fundamental categories of AI coding tools:

Inline assistants — These sit inside your editor and suggest code as you type. Think of the

original GitHub Copilot. They are reactive: they wait for you to write, then try to guess what

comes next. Useful, but limited.

Agentic tools — These are a completely different beast. You give them a task in natural

language, and they autonomously plan, write, edit, debug, and iterate. They don't just suggest

a line of code. They build features. This is where the real power is.

Here are the tools that matter right now:

Claude Code (by Anthropic)

Claude Code is, in our experience, the most powerful AI coding agent available today. It's a

terminal-based agent that operates directly in your project directory. You give it instructions in

natural language, and it reads your files, writes code, runs commands, creates commits, and fixes

errors autonomously. It has full access to your filesystem and shell, which makes it incredibly

effective for real development work. You can install it via npm (npm install -g @anthropic-

ai/claude-code) or use it as a VS Code extension, which we'll discuss shortly.

Google Antigravity

Antigravity is a development environment by Google that brings AI-powered chat and agent

capabilities directly into your workflow. Think of it as an intelligent workspace where you can

interact with AI agents through chat interfaces, and from each agent conversation you can open

an integrated VS Code editor. This is key: Antigravity gives you the conversational AI layer, while VS

Code provides the code editing power. The combination is seamless — you discuss what to build

with the agent, then jump straight into the code without switching windows.

Cursor

Cursor is a fork of VS Code with AI deeply integrated. It has both inline suggestions and an agentic

"Composer" mode where you can describe changes across multiple files. The UI is familiar if you

already use VS Code, and it supports multiple models (Claude, GPT, etc.). It's a solid tool,

especially if you prefer a fully visual workflow. However, its agentic capabilities, while good, are not

as autonomous as Claude Code. You'll often need to review and approve individual changes step

by step.

Our recommended setup: Google Antigravity + Claude Code as a VS Code extension. Use

Antigravity's agent chats to plan and discuss your work, then open the integrated VS Code

and let Claude Code handle the heavy execution. This gives you the best of both worlds:

intelligent conversation for planning, and autonomous code execution for building.

Choosing & Configuring Your Agent

Installing and running an agentic tool is the easy part. Getting the most out of it requires

understanding how it works, picking the right subscription, and setting it up correctly.

The Claude subscription: start with Pro

Claude Code requires an Anthropic account. We recommend starting with the Claude Pro

subscription, which is the entry-level paid tier. It's affordable and gives you access to Claude

Code with all its features. It's the perfect starting point to experiment, learn the workflow, and build

your first simple project.

Be aware, however, that the Pro plan has limited usage. If you use Claude Code intensively, you'll

hit the usage cap relatively quickly. For learning and small projects, it's more than enough. But if

you already know you want to use Claude Code as your primary development tool and plan to work

on it for hours every day, consider upgrading to one of the higher-tier plans (such as Max) from the

start. The higher plans offer significantly more usage, which means fewer interruptions and a

smoother workflow when building larger projects.

The model: Claude Opus 4.6

We currently recommend using Claude Opus 4.6 as your primary development model. It is, right

now, the best model for building websites and applications. It understands complex architectures,

writes clean and production-ready code, handles multi-file changes with remarkable accuracy,

and rarely needs corrections on the first attempt. When working with Claude Code, set Opus 4.6

as your default model. The difference in output quality compared to smaller models is immediately

noticeable.

Setting up Antigravity

From this point forward, this guide proceeds using Google Antigravity as our primary

development environment. Here's how to get everything ready.

Step 1: Create your project folder. Before opening Antigravity, create a folder on your computer

where your first project will live. For example, on Windows you might create C:\Projects\my-first-

app , or on Mac/Linux ~/Projects/my-first-app . This is the folder that Antigravity will open as a

workspace. It can be empty for now — we'll fill it with code later in the course.

Step 2: Install and launch Antigravity. Download Google Antigravity, install it, and open it. Sign in

with your Google account when prompted.

During the installation process, Antigravity will ask you to configure a few policies. For a fast,

autonomous development workflow, we recommend selecting custom configuration and setting

these options:

Terminal Execution Policy → Always Proceed

Review Policy → Always Proceed

JavaScript Execution → Always Proceed

With these settings, Antigravity's agents will be able to execute commands, write files, and run

code autonomously without asking for confirmation at every step. This is what enables the fast,

fluid development experience we aim for in this course.

Security warning: When you allow agents to proceed autonomously, both Antigravity and

Claude Code can execute actions on your system without manual approval. This means you

need to be mindful of what you expose them to. Do not point agents at codebases that may

contain malware, and be cautious with links or resources from untrusted sources. In the era

of AI, there are new attack vectors — malicious actors can craft content specifically

designed to trick LLMs into executing harmful commands. Always keep an eye on what your

agents are doing. We recommend the "Always Proceed" setup for speed, but stay vigilant

and review the output regularly.

Step 3: Open the Agent Manager. Once Antigravity is running, click "Open Agent Manager" in the

top bar of the window.

The "Open Agent Manager" button in Antigravity's top bar.

The Agent Manager is the central hub of Antigravity. This is where you manage your projects, start

AI conversations, and open your development workspaces.

Step 4: Create your first workspace. In the Agent Manager, look at the left sidebar. Under the

"Workspaces" section, click "+ Open Workspace". A dropdown will appear — select "Open New

Workspace".

Click "+ Open Workspace" in the left sidebar, then select "Open New Workspace".

Antigravity will ask you to select a folder. Navigate to the project folder you created in Step 1 and

select it. Your new workspace will appear in the left sidebar under "Workspaces", with the name of

the folder you selected. Think of each workspace as an individual development session — one per

project. You can create as many workspaces as you need, and switch between them from the

Agent Manager at any time.

Step 5: Open the editor. Once your workspace is created, you'll see its name in the sidebar. Click

the three vertical dots (⋮) next to the workspace name, then select "Focus Editor". This opens the

full VS Code environment for that workspace, where you'll write and edit your code.

Click the three dots next to your workspace name and select "Focus Editor".

Installing Claude Code as a VS Code extension

Now that you have the editor open, it's time to install Claude Code. Since the editor is based on VS

Code, you have access to the extensions marketplace. Click the Extensions icon in the left sidebar

(or press Ctrl+Shift+X). In the search bar, type "claude code". You may need to scroll down

through the results — look for "Claude Code for VS Code" by Anthropic. Once you find it, click the

Install button.

Search for "claude code" in the Extensions marketplace, scroll down to find it, and click Install.

Once installed, close the Extensions panel and open a new file (or any file in your project). You'll

notice a small Claude Code icon appearing in the top-right area of the editor — it looks like a small

orange symbol. Click it to open the Claude Code chat panel.

The Claude Code button (circled) appears in the top-right of the editor. Click it to open the Claude

Code chat.

Claude Code will ask you to sign in with your Anthropic account (the one with your Pro

subscription). After signing in, you need to configure it. In the Claude Code chat panel, click the /

button at the bottom of the panel. A menu will appear with various commands. Scroll down to the

Settings section and click "General config..." to open the Claude Code extension configuration.

Click the "/" button at the bottom, then scroll to Settings and select "General config..." to open the

configuration.

In the configuration panel that opens, look for the option called "Allow Dangerously Skip

Permissions". Enable this toggle. Once activated, you will be able to select "Bypass permissions"

as your permission mode, which allows Claude Code to operate fully autonomously — reading

files, writing code, running terminal commands, and making changes without asking for

confirmation at each step.

Enable the "Allow Dangerously Skip Permissions" toggle in the Claude Code settings, then select

"Bypass permissions".

Important: With bypass permissions enabled, Claude Code will execute actions on your

system without manual approval. This is essential for a fluid development workflow, but it

comes with responsibility. Be cautious about the code you ask it to run, and never point it at

untrusted repositories or suspicious URLs. AI agents can be exploited through prompt

injection — malicious content hidden in files or websites that tricks the agent into executing

harmful commands. Always review what Claude Code is doing, especially when working

with external resources.

We also recommend enabling the setting that makes "Bypass permissions" the default selection

for new chats, so you don't have to select it manually every time you start a new conversation. Now

close Claude Code and reopen it (by clicking the Claude Code icon button again). From this point

on, you'll see the "Bypass permissions" option available in the permission selector button at the

bottom of the Claude Code chat panel. Click it to activate it.

Select "Bypass permissions" from the button indicated in the screenshot.

With Bypass permissions active, Claude Code will execute commands, create files, edit code, and

run terminal operations completely on its own — without stopping to ask for your approval at every

step. This is what allows you to automate 100% of the development workflow: you describe what

you want to build, and Claude Code builds it autonomously from start to finish. No more clicking

"Accept" on every single file change or command execution. You give the instructions, and the

agent handles the rest.

Managing your usage smartly

One thing you should know from the start: every interaction with Claude Code consumes tokens,

and your subscription has a usage cap. The good news is that you can monitor exactly how much

you've used. In the Claude Code chat panel, click the / button — among the available commands

you'll find your current usage, showing how many tokens you've consumed and how much

capacity you have left.

Not all models consume tokens at the same rate. Claude Opus 4.6 is the most intelligent and

capable model, but it also consumes the most tokens per interaction. Smaller models like Sonnet

or Haiku are less powerful but have higher usage caps and consume significantly fewer tokens.

Our recommendation: use Opus for complex tasks that require deep reasoning, multi-file

changes, or architectural decisions — this is where its intelligence makes a real difference. For

simpler tasks like quick fixes, small edits, or straightforward questions, switch to a lighter model to

preserve your Opus tokens for when they truly matter.

There's another strategy to save your Claude tokens: use Antigravity's built-in agent for questions

that don't require Claude's level of intelligence. Antigravity supports multiple models, but we

recommend using Gemini for these quick questions — since Antigravity is a Google product,

Gemini has the highest usage cap and is also the fastest model available on the platform. Need a

quick CSS reminder? Want to know the syntax for a Git command? Curious about how a library

works? Ask Antigravity instead of Claude Code. This way, you keep your Claude tokens for the

heavy development work where they make the biggest impact.

As you can see in the earlier screenshot, we recommend keeping the Claude Code chat on the left

and Antigravity's agent chat on the right. This side-by-side layout gives you instant access to

both agents at all times.

The smart workflow: Opus for building, lighter models for quick tasks, Antigravity for

general questions. This way you maximize your Claude subscription value. If you're running

low on your Claude usage cap, remember that you always have Antigravity's Gemini agent

right next to you for simpler questions — use it to save your Claude tokens for the

development tasks that truly need them.

Essential configuration

Regardless of how you install Claude Code, these configuration steps will dramatically improve

your results:

Use a CLAUDE.md file — Place a CLAUDE.md file in your project root. This file is automatically

read by Claude Code at the start of every session. Use it to describe your project structure,

coding conventions, tech stack, and any rules the agent should follow. Think of it as

onboarding documentation for your AI developer.

Keep your project organized — AI agents work dramatically better with clean, well-structured

codebases. If your code is a mess, the agent will produce messy output. Good folder

structure, clear naming conventions, and consistent patterns make a massive difference.

Use version control — Always work with Git initialized. This gives you a safety net. If the agent

makes a mistake, you can revert instantly. It also allows the agent to create commits for you,

which is surprisingly useful for tracking what changed and why.

Essential Tools: Git & GitHub CLI

Before we start building anything, there are two tools that need to be installed on your system: Git

and the GitHub CLI (gh). These are fundamental for any modern development workflow, and

they're what allow your AI agents to manage your code repositories autonomously.

Why Git and GitHub CLI matter

Git is the version control system that tracks every change in your project. It's your safety net: if

Claude Code makes a mistake, you can revert instantly. It also allows the agent to create commits,

manage branches, and keep a clean history of your project's evolution — all automatically.

GitHub CLI (gh) is a command-line tool that gives direct access to GitHub from the terminal. This is

the key to full automation: once gh is installed and authenticated, Claude Code can create

repositories, push code, manage pull requests, configure repository settings, set up GitHub

Actions for deployment, add secrets, and much more — all from its terminal, without you having to

open GitHub in a browser.

Installing Git and GitHub CLI

The simplest way to install these tools is to ask Claude Code or Antigravity to do it for you. Simply

tell your agent: "Install Git and the GitHub CLI on my system." The agent will detect your operating

system and run the appropriate installation commands. On Windows, it will typically use winget or

download the installers; on macOS, it will use brew ; on Linux, apt or your system's package

manager.

If you prefer to install them manually, you can download Git from the official website and the

GitHub CLI from its GitHub releases page. But letting the AI handle it is faster and avoids common

installation mistakes.

Authenticating GitHub CLI

After installation, you need to log in so that gh can access your GitHub account. Again, you can

simply ask your agent: "Log me into GitHub CLI." The agent will run gh auth login and guide you

through the authentication flow, which typically involves opening a browser link and entering a

code. Once authenticated, the agent has full access to your GitHub repositories.

This is a game-changer. With gh authenticated, you can tell Claude Code things like:

"Create a new private repository called my-app, initialize the project, and push the code."

Or later: "Set up a GitHub Action that deploys to my server on every push to main." The

agent handles everything — creating files, configuring secrets, setting up workflows —

without you ever leaving the editor. This is what true development automation looks like.

3. Your First Build: Zero to Live

Your environment is ready. Claude Code is open, Antigravity is running, Git and GitHub CLI are

configured. It's time to build something real. From this point forward, this course shifts from

setup to strategy — practical techniques and insights that will give you a real advantage when

building with AI agents.

Never Start From Scratch

This is the single most important piece of advice in this entire course: never build from scratch.

Even though Claude Opus is an incredibly advanced and intelligent model, it will make mistakes.

Every AI model does. It might misunderstand your project structure, use an outdated library, create

an inconsistent file layout, or generate code that doesn't quite fit together when the project

grows. Starting from an empty folder means the AI has to make hundreds of decisions with no

reference point — and some of those decisions will inevitably be wrong.

Here's the reality: 99.9% of what you want to build already exists in some form. Whether it's an e-

commerce store, a SaaS dashboard, a portfolio site, a social media app, or a booking platform —

someone has already built something similar. And many of these projects are open-source,

available as templates on GitHub, ready to be cloned and customized.

Your workflow should always start the same way: search for a template first. Go to GitHub and

look for open-source projects that match what you want to build. Find one that's close to your

vision, clone it into your project folder, and then point Claude Code at it. Now instead of building

from zero, the agent is modifying, improving, and customizing an existing, working codebase. The

difference in quality and speed is enormous.

Templates are not cheating — they're strategy. Professional developers use boilerplates

and starter kits all the time. You're not copying someone's product. You're using a structural

foundation and building your own unique product on top of it. The AI performs dramatically

better when it has existing patterns to follow rather than inventing everything from nothing.

Choosing the Right Stack

If your template search comes up empty and you truly need to start a new project, the technology

you choose can make a difference — especially when working with AI agents. That said, there's no

single mandatory choice. The best stack is the one that gets you to a working product fastest.

Claude Code, like all LLMs, is fundamentally better at writing web-based code: HTML, CSS,

JavaScript, and TypeScript. This is the language of the internet, and it's what these models have

been trained on the most. The closer your project stays to web technologies, the better the AI will

perform.

For web applications, Next.js is an excellent choice if you can find it. It's a modern React

framework with built-in server-side rendering, which is critical for SEO. Claude Code works

exceptionally well with Next.js projects: it understands the file-based routing, API routes, server

components, and the entire ecosystem. You'll find an enormous number of Next.js templates on

GitHub for virtually any type of application.

For desktop applications (executables for Windows, macOS, or Linux), Electron is a great option.

Electron lets you build desktop apps using HTML, CSS, and JavaScript — the same web

technologies Claude excels at. Since the UI is essentially a web page rendered inside a native

window, the AI can build beautiful, functional desktop applications with the same ease as building

a website.

But here's the important nuance: a well-built template in an older stack is almost always better

than starting from scratch with a modern one. You might find a PHP, jQuery, or Laravel project

that's exactly what you need — complete, well-structured, battle-tested, with all the features

already implemented. In that case, use it. AI agents can work with any technology, and the time you

save from having a solid, ready-made foundation far outweighs the theoretical advantages of a

newer framework. Claude Code can understand and modify PHP, Python, Ruby, or any other

codebase just fine.

The priority is simple: find the best template available. If you find two templates of similar quality

and one uses Next.js while the other uses PHP, go with Next.js. But if the PHP template is more

complete, more feature-rich, and better maintained — pick that one without hesitation. Quality

and completeness of the starting point matter more than stack modernity.

The rule of thumb: use whatever you find that gets you closest to your goal. Aim for modern

web technologies (Next.js, Electron, React Native) when available, but never reject a great

template just because it uses an older stack. The time saved from a solid foundation is

always more valuable than stack purity.

Practical example: finding a template

Let's say you want to build an e-commerce store. Instead of telling Claude Code "Build me an e-

commerce site from scratch", open GitHub and search for something like "nextjs ecommerce".

You'll find dozens of ready-made projects with product listings, shopping carts, checkout flows,

and payment integration already built.

A quick GitHub search for "nextjs ecommerce" already shows several promising templates.

One important thing to keep in mind: many templates on GitHub are freemium projects — the core

is open-source and free, but some features or premium versions require payment. Always check

the repository's README and license before committing to a template. Avoid anything that

requires paid subscriptions or hidden costs that you don't need.

Looking at the search results, we can spot fullstack-nextjs-ecommerce — and it's an excellent

starting point. Let's analyze why. The project uses Next.js with TypeScript, which is exactly what we

want for AI-assisted development. But what really stands out is what's already integrated: Stripe

for payments, PostgreSQL with Prisma as the database, and NextAuth for authentication. These

are three of the most critical — and most error-prone — parts of any web application.

Having Stripe already integrated is particularly valuable. Payment processing involves webhooks,

session management, error handling, and edge cases that can be surprisingly tricky to get right.

When something goes wrong with payments, your customers are the ones who suffer — failed

charges, duplicate payments, or broken checkout flows are the kind of bugs that destroy trust and

cost you real money. Starting with a template that already has a working Stripe integration saves

you from these headaches.

The project also uses PostgreSQL as its database, which is a solid choice. Postgres is reliable,

well-documented, offers slightly better security defaults compared to alternatives like MySQL,

and can be easily hosted on Amazon AWS, Hetzner, or similar providers — we'll cover server setup

and deployment in the next chapter. The fact that NextAuth is already wired up means user

authentication is handled out of the box, another complex piece you don't have to build from

scratch.

This is the power of starting with the right template: instead of spending days (or weeks) setting up

payments, database, and authentication — all things that are easy to get wrong — you start with a

project where these critical systems already work. You can then focus entirely on customizing the

product to your vision: changing the design, adding your products, modifying the business logic,

and building the features that make your store unique.

Once you've found your template, the next step is simple: download it and place it in your

workspace folder. Open that folder with Claude Code (or Antigravity) and start working. You can

tell Claude Code to modify the template directly — change the branding, add new pages, rework

the layout, integrate new features — or you can use the template as a reference for your own

project. Even if you're building something slightly different, having the template in the same

workspace means Claude Code can look at it, study the code patterns, and use them as a

foundation for what it writes.

This is a crucial point: always give Claude Code something to reference. When the agent has a

solid, working codebase to look at, it writes significantly better code. It follows the same patterns,

uses the same conventions, and produces output that is consistent and reliable. When it has

nothing to reference and has to generate everything from scratch, that's when mistakes happen —

inconsistent file structures, wrong library versions, code that doesn't fit together. A template acts

as an anchor that keeps the AI grounded and producing high-quality, coherent results.

What if the template doesn't have payments or a database? That's fine too. This course

includes ready-made Stripe integration files that you can give directly to Claude Code to

integrate payments into any project. For the database, we recommend PostgreSQL or

whatever database the template already uses — don't fight the template's choices unless

there's a strong reason. Same goes for authentication: if the template uses NextAuth, Clerk,

or any other auth system, work with it. The goal is to leverage what's already built, not to

replace everything.

4. From Code to Production

Your product is built. Now it needs to accept payments, run on a server, and be fast and secure

for users worldwide. This chapter covers the essential services that turn your project from local

code into a live, production-ready business.

A note about this chapter. We're keeping things concise and to the point here. Our goal is

to tell you what you need to do and why — not to write lengthy tutorials that waste your

time. Any LLM (Claude, Gemini, ChatGPT) can explain the details, walk you through each

step, and answer your questions far better than a static page ever could. Whenever

something isn't clear, just ask your agent: "I'm following a course and it says I need to [do X].

Can you explain what this means and walk me through it?" This is faster, more personalized,

and always up to date.

Payments with Stripe

If your product sells anything, you need a payment processor. Stripe is the industry standard:

reliable, well-documented, and supported by virtually every AI agent because of how widely it's

used.

Here's what you need to do:

Create a Stripe account at stripe.com. You'll get API keys (a publishable key for the frontend, a

secret key for the backend) and access to both test mode (fake payments for development)

and live mode (real money).

Set up webhooks in the Stripe dashboard. Webhooks are URLs on your server that Stripe calls

when something happens — a payment succeeds, a subscription renews, a charge fails. This is

how your app knows when to activate a subscription, confirm an order, or handle a failure. You

need webhooks for both local testing (Stripe has a CLI tool that forwards events to your

localhost) and production (pointing to your live server). Always get everything working locally

before going live.

Integrate Stripe into your project. If your template already has Stripe, just plug in your API

keys. If not, this course includes ready-made Stripe integration files — drop them in your

workspace and tell Claude Code to integrate them. Stripe supports one-time payments and

recurring subscriptions, both using hosted checkout pages that handle card validation, 3D

Secure, and PCI compliance for you.

One crucial rule: always verify payments server-side through webhooks, never trust the frontend.

The webhook is Stripe telling your server directly that money actually changed hands — it's the only

reliable source of truth.

Hosting: AWS, Hetzner & Beyond

Your app needs to live somewhere. The good news: AWS gives you a Free Tier when you sign up —

for one full year, you get a t2.micro server and a micro database completely free. That's enough

to host your first project while you validate the idea and start getting users.

Don't know how to set up an AWS account or use the Free Tier? Just ask Claude or Antigravity —

they'll walk you through every step.

When you outgrow the free tier, here's what you need to know about server sizing:

t3.small is the sweet spot for most apps — good CPU, enough RAM, and reasonable pricing

(~$16/month on AWS). The "t" refers to the instance generation; older generations (t2, etc.) can

sometimes cost more for less performance, so stick with the latest available.

Hetzner is a European alternative that's significantly cheaper — you can get performance

comparable to a t3.small for around $4/month. That's roughly 4x cheaper than AWS for similar

specs.

Not every app needs a server. If your project is a static site or a JAMstack app, you might not

need a dedicated server at all. Platforms like Vercel, Netlify, or even Cloudflare Pages can host

it for free or nearly free. Always ask your LLM: "What's the best hosting for my specific app?"

Our recommendation: start with AWS Free Tier for your first year, then evaluate whether Hetzner or

another provider makes more sense for your budget and audience location. If most of your users

are in Europe, Hetzner's German servers will give you lower latency. If your audience is global or

US-based, AWS regions might be a better fit.

SSH keys & AI server management. To let Claude Code connect to and manage your server

remotely, you'll need to set up an SSH key. Ask Claude to generate one and configure it on

your server. Once connected, Claude can deploy code, manage services, troubleshoot

issues — all from your terminal. For server management tasks, we recommend using Opus

for the best results, though Sonnet works too if you want to save tokens (with a slightly

higher chance of errors).

Cloudflare: Performance & Protection

Once your app is on a server, you need something sitting in front of it to protect it and speed it up.

That's Cloudflare. The good news: the free plan is more than enough for the vast majority of

websites. You don't need a paid plan.

But first, you'll need a domain name. We recommend buying one directly from Cloudflare or

Namecheap — both are reliable and fairly priced. Once you have your domain, you'll need to

configure the DNS to point to the IP address of your AWS or Hetzner server. Just ask your LLM: "I

bought a domain on [Cloudflare/Namecheap]. How do I set up DNS to point to my server at [your

IP]?" It will walk you through it.

Why is Cloudflare so important? It protects your site from DDoS attacks, various security exploits,

and common web vulnerabilities. It also provides a global cache, meaning your content gets

served from servers close to your users, making your site faster worldwide. Without a service like

Cloudflare, you're exposing your site to serious risks — especially now, in the AI era, where anyone

can use AI tools to find vulnerabilities, exploit misconfigurations, or even steal data from poorly

protected websites. Don't skip this.

Quick tip: Flexible SSL mode. When setting up Cloudflare, you can choose Flexible SSL

mode. This means the connection between Cloudflare and your server uses plain HTTP, but

the connection between Cloudflare and your end users is HTTPS — so visitors see a secure

padlock. This saves you from having to configure SSL certificates on your server, which is

great for getting started quickly. For production apps that handle sensitive data, you

should eventually switch to Full mode (encrypted end-to-end). But for your first tests and

launches, Flexible is perfectly fine and saves a lot of setup time. Ask your LLM to explain the

differences if you're unsure which mode fits your project.

There's more to Cloudflare than just protection. The free plan includes powerful features that many

developers don't even know about:

Cloudflare Pages — free static hosting for frontend apps (React, Next.js static export, Vue,

etc.). You push to GitHub, Cloudflare builds and deploys automatically. Zero configuration,

zero cost. Perfect for landing pages, portfolios, and JAMstack apps.

Edge Functions (Workers) — run serverless code at the edge, close to your users, on the free

plan. Great for API routes, redirects, A/B testing, and lightweight backend logic without

needing a full server.

CDN & Caching — your static assets (images, CSS, JS) are cached globally, making your site

blazing fast from anywhere in the world.

The key question is: does your app actually need a dedicated server, or can Cloudflare handle it

for free? Ask Claude: "I'm building [describe your app]. Do I need a dedicated server on

AWS/Hetzner, or can I use Cloudflare Pages and Workers for free?" Claude will analyze your

specific case and tell you the best option. You might be surprised how many projects can run

entirely on Cloudflare's free tier.

API Keys: Automate Everything

Here's a game-changing tip that most tutorials skip: create API keys for your hosting providers

and give them to Claude. This lets Claude manage your infrastructure directly from the terminal —

no clicking around dashboards, no copy-pasting, no manual work.

Cloudflare API Key — go to your Cloudflare dashboard → My Profile → API Tokens → create a

token. With this, Claude can automatically configure DNS records, set up Pages projects,

manage Workers, update SSL settings, and much more. Ask Claude: "Here's my Cloudflare API

token. Set up DNS for my domain pointing to my server IP." Done in seconds.

AWS Access Keys — go to AWS IAM → create an access key. With this, Claude can manage

EC2 instances, configure security groups, set up RDS databases, manage S3 buckets, and

handle your entire AWS infrastructure programmatically. Ask Claude: "Here are my AWS

credentials. Launch a t3.small EC2 instance in us-east-1 and configure the security groups for

a web app."

Hetzner API Token — go to your Hetzner Cloud Console → project → Security → API Tokens →

generate one. Claude can then create servers, configure firewalls, manage snapshots, and

handle your entire Hetzner infrastructure. Ask Claude: "Here's my Hetzner API token. Create a

CX22 server in Nuremberg with Ubuntu."

Security note on API keys. These API keys are powerful — treat them like passwords. Never

commit them to Git, never share them publicly, and never paste them in chat interfaces that

you don't trust. Store them in a .env file or pass them directly to Claude in your terminal

session. If a key gets compromised, revoke it immediately from the provider's dashboard

and generate a new one. Also, when creating API tokens, always use the least privilege

principle: give only the permissions that are actually needed, not full admin access.

The combination of these API keys with Claude is incredibly powerful. You can literally say: "I have a

Next.js app. Deploy it on Cloudflare Pages, set up the custom domain, and configure the DNS —

here are my API keys." And Claude will do the entire thing automatically. Or: "Create an EC2

instance on AWS, install Node.js and PM2, configure nginx, set up Cloudflare DNS, and deploy my

app." Full infrastructure setup in minutes, not hours.

CI/CD with GitHub Actions

Remember when we set up Git and GitHub CLI back in Chapter 2? This is where it all pays off. With

gh authenticated, you can tell Claude Code to push your project to a private GitHub repository,

set up GitHub Actions, configure all the necessary secrets (your server's SSH key, environment

variables, etc.), and create an automatic deployment pipeline — all from its terminal, without you

touching GitHub's interface.

The idea is simple: once GitHub Actions is configured, every time Claude Code pushes code to

your repository, it automatically deploys to your server. No manual SSH, no copying files, no

running commands on the server yourself. Claude pushes, GitHub Actions picks it up, connects to

your AWS or Hetzner server via SSH, and deploys everything. Fully automated.

Just tell Claude: "Push this project to a new private repository on GitHub, set up a GitHub Action

that deploys to my server on every push to main. Here's my server IP and SSH key." Claude already

knows how to do this — it will create the workflow file, add the SSH key and server IP as GitHub

secrets, and configure the entire pipeline. This is exactly why we installed the GitHub CLI earlier.

Dynamic IP gotcha. Static IPs usually cost extra on both AWS and Hetzner, so you'll likely be

using a dynamic IP to save money. This means every time you stop and restart your server,

the IP changes. When that happens, you'll need to update it in two places: the Cloudflare

DNS record and the SERVER_IP GitHub secret. Tell Claude to store the server IP as a

SERVER_IP secret in GitHub Actions, so when it changes you only need to update one

variable. Also tell Claude to remind you to check and update the IP if a deployment fails — a

changed IP is almost always the reason.

5. Marketing & SEO Tactics

Your product is live. Now the world needs to know it exists. The most effective marketing for

indie products is organic — free, creative, and surprisingly powerful when done right. This

chapter covers the exact tactics we use.

Organic Growth Strategies

Let's be honest: the best marketing doesn't look like marketing. The internet is saturated with ads,

and people have developed a reflex to ignore anything that feels like a promotion. What actually

works is stealth marketing — content that looks like genuine information, a question, or a

recommendation rather than an advertisement. People are naturally curious and love to help with

suggestions. Use that.

Reddit is one of the most powerful platforms for this. It's massive, highly indexed by Google, and

full of niche communities where your target audience already hangs out. But here's the key: never

post aggressive marketing. Don't write "Check out my amazing new site!" — that will get

downvoted, removed, or banned. Instead, write something like:

"Can anyone recommend sites similar to [well-known competitor] or [your site]? Looking for

alternatives."

"Has anyone tried [your product category]? I found [your site] but curious about other

options."

Answer questions in relevant subreddits and naturally mention your product where it genuinely

helps.

This is how the majority of successful indie marketing works on Reddit. You're not lying — you're

framing your product as a discovery within a genuine conversation. People click because they're

curious, not because they feel sold to. And here's a bonus: Reddit posts get indexed by Google,

so a well-placed thread can bring you organic search traffic for months or even years.

You can also sponsor a Reddit post for a small budget to boost it temporarily. This pushes it higher

in search results, lets Google index it faster, and gives it initial visibility. Ask your LLM how Reddit

post promotion works and what budget makes sense.

The funnel trick. On your homepage or landing page, include something that attracts

people independently of your main product — a free tool, a trending topic, useful

information, or something that's currently popular. This acts as a funnel: people arrive for

the free/interesting content, discover your product, and a percentage of them convert.

Think of it as bait that provides genuine value while leading to what you're selling.

SEO, Content & Distribution

Before you start any marketing, set up your analytics and tracking. You need two things:

Google Analytics — add the tracking code to your site (ask Claude to integrate it). There's also

a mobile app so you can check your traffic from your phone anytime. This shows you total

visits, user behavior, traffic sources, and conversion data.

Google Search Console — set this up and connect it to Google Analytics. Search Console

specifically tracks your organic Google traffic: what search queries bring people to your site,

how often you appear in search results, and your click-through rates. Ask your LLM how to set

up and connect both tools.

If you have budget available, Google Ads can give you an initial boost. Running ads briefly helps

build trust with Google's algorithm and drives early traffic while your organic SEO grows. But the

costs add up quickly, so treat it as a short-term accelerator, not a long-term strategy. Your LLM can

explain Google Ads setup and budgeting in detail.

For SEO itself, start with the basics. Open your browser's DevTools (F12), go to Lighthouse, and

generate a report. This gives you scores for Performance, Accessibility, Best Practices, and SEO.

Fix what it tells you to fix — and yes, you can ask Claude Code to handle the fixes.

Key SEO actions to take:

Add translations to your pages. Multi-language support dramatically increases your reach.

Ask Claude Code to set up internationalization for your project.

Add proper meta tags — title, description, Open Graph tags for social sharing, structured

data. These directly affect how your site appears in Google search results.

Create and submit a sitemap. Generate an up-to-date sitemap and upload it to Google

Search Console. This tells Google exactly which pages exist on your site and helps them get

indexed faster.

SEO requires patience. Don't expect organic traffic overnight — it takes weeks or months

for Google to properly index and rank your pages. But when it kicks in, it's free traffic that

keeps coming without you spending a cent. The clicks you'd otherwise pay hundreds of

euros for via Google Ads will come for free through organic search. In the meantime, put in

the work on social platforms like Reddit to build initial visibility and backlinks. SEO is a long

game, but it's the most valuable marketing investment you can make.

The emerging trend: AI-driven traffic

There's a new and rapidly growing source of traffic that most people aren't paying attention to yet:

LLMs recommending your site. ChatGPT, Gemini, Claude, and other AI assistants are increasingly

being used as search engines. When someone asks "What's a good site for [your product

category]?", these models can and do recommend specific websites — and that drives real traffic.

A significant portion of our own visits come from ChatGPT and other LLMs.

To take advantage of this, go to your Cloudflare dashboard and make sure you disable the option

that blocks AI crawlers. Many sites block AI bots by default, which prevents LLMs from learning

about your content. By allowing AI crawlers to access your site, you're letting these models index

your pages, understand what you offer, and potentially recommend you to users in the future. This

is essentially free SEO for the AI era — and the boost can be enormous.

Think beyond Google. Traditional SEO targets Google search. But AI-driven

recommendations are becoming a major traffic source — and this trend is only

accelerating. Make sure your site is accessible to AI crawlers, has clear and descriptive

content, and is well-structured so LLMs can easily understand what you offer. The sites that

position themselves now for AI discovery will have a massive advantage as this channel

grows.

Thank You!

Thank you for purchasing this course and for trusting us with your time and money. We

genuinely hope you found it valuable and that it helps you build something real.

We'd love to hear from you. Join our Discord community at apifreellm.com — it's where

we hang out, share updates, and help each other out.

If you have a moment, write us a review and tell us what you think. What did you find

most useful? What was missing? What could be better? We're genuinely interested in

your feedback — this course is a living project and we want to keep improving it based

on what you actually need.

See you on Discord. Now go build something amazing.

https://apifreellm.com/

